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CHAPTER 1

Notes on Infrastructure

The practical exercises of this workshop will be running on a separate virtual machine (VM) for each participant.
Access to this virtual machine can be obtained using various channels, including a custom terminal client software
(such as Terminal on Mac OS X) and Jupyter, a browser based system for interactive computing. For the following, I
will assume access via Jupyter.

1.1 How to Connect to Jupyter

To connect to the Jupyter interface for your virtual machine, open your favourite Browser, go to the VM Server entry
page, and click on the Jupyter link indicated for your particular machine. You will be asked to enter the password you
have been given for your personal VM.

1.2 Basic Usage

When you first access Jupyter, you will get a file browser view of the ~/work folder on your VM. In the beginning
that list will be empty, and will be populated with notebooks and files throughout this workshop.

To create a new text file, click on New and then Text File, which opens a text editor within your browser. You can now
add content into the file, or edit existing content and save. The filename can be changed by clicking into the Filename
on top. You can now go back to your file browser window and update using the button with the two arrows in the
upper right corner, and you should see your text file saved under ~/work on your VM.

You can also use Jupyter to open a Terminal within the browser: Click on New and then Terminal, which will open a
terminal window in a separate browser tab. You can enter Unix Bash commands to change directories, view files or
execute programs.

Note: To use the terminal, some basic knowledge of Unix is required. For this workshop, you will frequently use
tools such as pwd to view the current directory, ls to view the contents of the current directory, cd to change the
directory, cat to output the contents of a file, grep to search in a text file and other commands.
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Finally, you can create new Folders by clicking on New and then Folder. To rename the new folder, click on the
checkbox beside the new folder, and click the Rename button on top, which appeared. To change into the new folder,
click on it. To move back, click on the parent folder appearing on top of the file browser.

Exercise

Create a new folder called fun, and a text file within that folder using Jupyter. Fill the text file with arbitrary content,
such as “Hello, World!”. Then open a terminal and output the new text file using the cat command.

1.3 Notebooks

Notebook can be loaded for different underlying kernels: bash, python 2, python3 and R. In this tutorial, we will use
bash and python 3. Notebooks are useful to document interactive data analysis. It combines code cells with markdown
cells. A markdown cell can contain text, math or headings.

Exercise

Create a new bash notebook. Then select in the dropdown list above “Markdown”. Type # This is a
heading into the cell, press Shift-Enter and watch. Then type This is text with \*italic\* and
\*\*bold\*\* letters. To change the cells, double click into them.

Code cells can be used to write arbitrary code, execute it and get the results printed back into the Notebook.

Exercise

A new empty Code cell should have been added to the Notebook in the last step. Click into this code cell and type ls.
This should output the current directories and files into the notebook. Into a new cell enter NAME="Hello World"
and in the line below (same cell) echo $NAME.

You can use Bash notebooks to perform standard Unix tasks and run programs throughout this workshop. That way,
you have always documented what you did.

In Python 3 notebooks you can plot things: Create a new python3 notebook, and use this boilerplate code in the first
cell:

%matplotlib inline
import matplotlib.pyplot as plt

Exercise

Create a simple plot using plt.plot([1, 2, 3], [5, 2, 6])
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CHAPTER 2

Principal Components Analysis (PCA)

Principal components analysis (PCA) is one of the most useful techniques to visualise genetic diversity in a dataset.
The methodology is not restricted to genetic data, but in general allows breaking down high-dimensional datasets to
two or more dimensions for visualisation in a two-dimensional space.

Hint: You can find the solution notebooks for all exercises in this and subsequent sessions here

2.1 Genotype Data

This lesson is also our first contact with the genotype data used in this and most of the following lessons. The dataset
that we will work with contains 3,902 individuals, each represented by 593,124 single nucleotide polymorphisms
(SNPs). Those SNPs have exactly two different alleles, and each individual has one of four possible values at each
genotype: homozygous reference, heterozygous, homozygous alternative, or missing. Those four values are encoded
2, 1, 0 and 9 respectively.

The data is laid out as a matrix, with columns indicating individuals, and rows indicating SNPs. The data itself comes
in the so-called “EIGENSTRAT” format, which is defined in the Eigensoft package used by many tools used in this
workshop. In this format, a genotype dataset consists of three files, usually with the following file endings:

*.snp The file containing the SNP positions. It consists of six columns: SNP-name, chromosome, genetic positions,
physical position, reference allele, alternative allele.

*.ind The file containing the names of the individuals. It consists of three columns: Individual Name, Sex (encoded
as M(ale), F(emale), or U(nknown)), and population name.

*.geno The file containing the genotype matrix, with individuals laid out from left to right, and SNP positions laid
out from top to bottom.

Exercise

Explore the three files used in the workshop. They are located unser ~/share/genotype_data. You can use the
bash terminal, and use less -S <FILENAME> to view each file and skim through it to get a feeling for the data.

5

https://github.com/stschiff/compvar-workshop-docs/tree/master/supp
https://github.com/DReichLab/EIG


Genome Analysis Workshop 2018 Documentation, Release 1.0

Alternatively, you can create use a Bash notebook, use cd as above, and then use the unix tools head in combination
with cut to show portions of the files (see solutions notebook bash_commands).

Exercise

Confirm that there are 1,351 individuals in the dataset. (Advanced) Count how many different populations there are.
Hint: You can use the Unix tools awk '{print $3}', sort and uniq -c to achieve that (see solutions notebook
bash_commands).

2.2 How PCA works

To understand how PCA works, consider a single individual and its representation by its 593,124 markers. Formally,
each individual is a point in a 593,124-dimensional space, where each dimension can take only the three possible
genotypes indicated above, or have missing data. To visualise this high-dimensional dataset, we would like to project
it down to two dimensions. But as there are many ways to project the shadow of a three-dimensional object on a
two dimensional plane, there are many (and even more) ways to project a 593,124-dimensional cloud of points to two
dimensions. What PCA does is figuring out the “best” way to do this project in order to visualise the major components
of variance in the data.

2.3 Preparing the parameter file

For actually running the analysis, we use a software called smartPCA from the Eigensoft package. As many other
tools from this and related packages, smartPCA reads in a parameter file which specifies its input and output files
and options. The basic format of the parameter file with one extra option (lsqproject) looks like this:

genotypename: <GENOTYPE_DATA>.geno
snpname: <GENOTYPE_DATA>.snp
indivname: <GENOTYPE_DATA>.ind
evecoutname: <OUT_FILE>.evec
evaloutname: <OUT_FILE>.eval
poplistname: <POPULATION_LIST_FILE>.txt
lsqproject: YES
numoutevec: 4
numthreads: 1

Here, the first three parameters specify the input genotype files, as discussed above. The next two rows specify two
output file names, typically with ending *.evec and *.eval. The parameter line beginning with poplistname
contains a file with a list of populations used for calculating the principal components (see below). The option
lsqproject is important for applications including ancient DNA with lots of missing data, which I will not elab-
orate on. For the purpose of this workshop, you should use lsqproject: YES. The last option numoutevec
specifies the number of principal components that we compute.

2.4 Population lists vs. Projection

The parameter named poplistname is a very crucial one. It specifies the populations whose individuals are used
to calculate the principal components. Why not just all of them you ask? For two reasons: First, there are simply
too many of them. As you may have found out in the exercise above there are more than 500 ancient and modern
populations available in the dataset, and we don’t want to use all of them, since the computation would take too long.

6 Chapter 2. Principal Components Analysis (PCA)
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More importantly, however, we generally try to avoid using ancient samples to compute principal components, to
avoid specific ancient-DNA related artefacts affecting the computation.

So what happens to individuals that are not in populations listed in the population list? Well, fortunately, they are not
just ignored, but “projected”. This means that after the principal components have been computed, all individuals (not
just the one in the list) are projected onto these principal components. That way, we can visualise ancient populations
in the context of modern genetic variation. While that may sound a bit problematic at first (surely there must be
variation in ancient populations that is not represented well by modern populations), but it turns out to be nevertheless
one of the most useful tools for this purpose. The advantage of avoiding ancient-DNA artefacts and batch effects
to affect the visualisation outweighs the disadvantage of missing some private genetic variation components in the
ancient populations themselves. Of course, that argument breaks down once the analysed populations become too
ancient and detached from modern genetic variation. But for our purposes it will work just fine.

For this workshop, I prepared two population lists:

/home/training/share/WestEurasia.poplist.txt
/home/training/share/AllEurasia.poplist.txt

As you can tell from the names of the files, they specify two sets of modern populations representing West Eurasia or
all of Europe and Asia, respectively.

Exercise

Look through both of the population lists and google any population name that you don’t recognise to get a feeling for
the ethnic groups represented here.

2.5 Running smartPCA

Now go ahead and prepare a parameter file according to the layout described above. . .

Hint: Put all filenames with their absolute path into the parameter file. To prepare the parameter file, you can use the
so-called “Heredoc” syntax in bash, if you are familiar with it (as done in the solution notebook bash_commands).
Alternatively, you can use the Jupyter file editor to create the parameter file.

. . . and run smartPCA using the command smartpca -p <PARAMS_FILE>

Exercise

Run smartpca with the prepared parameter file.

Note: Running smartPCA with this dataset takes between 15 and 30 minutes.

Hint: smartpca outputs a flurry of log messages that may be useful later. If you run the program within a Jupyter
Notebook, you can always go back later and view the log, as it is saved within the notebook. If you choose to run
it through a terminal, you should direct the output into a file, e.g. like this smartpca -p PARAMS_FILE >
output.log.

2.5. Running smartPCA 7



Genome Analysis Workshop 2018 Documentation, Release 1.0

To facilitate further processing, I have put the results file into ~/share/pca_results/pca.WestEurasia.*
and ~/share/pca_results/pca.AllEurasia.*

2.6 Plotting modern populations

There are several ways to make nice publication-quality plots (Excel is usually not one of them). Popular tools include
R and matplotlib . Both frameworks can be used within the Jupyter Notebook Python3 interface, and here I opted for
matplotlib.

I suggest that you start a new Jupyter Notebook with the Python3 language, and load a couple of essential libraries in
the first code cell:

%matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt

Let’s have a look at the main results file from smartpca, the *.evec file, for example by going to the terminal
and running head EVEC_FILE, where EVEC_FILE should obviously replaced with the actual filename of the PCA
run. You should find something like:

#eigvals: 6.289 3.095 2.693 2.010
I001 -0.0192 0.0353 -0.0024 -0.0084 Ignore_Iran_

→˓Zoroastrian(PCA_outlier)
I002 -0.0237 0.0372 -0.0018 -0.0133 Ignore_Iran_

→˓Zoroastrian(PCA_outlier)
IREJ-T006 -0.0226 0.0417 0.0045 0.0003 Iran_Non-Zoroastrian_Fars
IREJ-T009 -0.0214 0.0404 0.0024 -0.0064 Iran_Non-Zoroastrian_Fars
IREJ-T022 -0.0165 0.0376 -0.0003 -0.0106 Iran_Non-Zoroastrian_Fars
IREJ-T023 -0.0226 0.0376 -0.0031 -0.0101 Iran_Non-Zoroastrian_Fars
IREJ-T026 -0.0203 0.0373 -0.0009 -0.0103 Iran_Non-Zoroastrian_Fars
IREJ-T027 -0.0241 0.0392 0.0025 -0.0072 Iran_Non-Zoroastrian_Fars

The first row contains the eigenvalues for the first 4 principal components (PCs), and all further rows contain the PC
coordinates for each individual. The first column contains the name of each individual, the last row the population. To
load this dataset with python, we use the pandas package, which facilitates working with data in python. To load data
using pandas, use the read_csv() function.

Exercise

Load one of the two PCA results files with ending *.evec. You need to skip the first row and name the columns man-
ually. Use “Name”, “PC1”, . . . “PC4”, “Population” for the column names. Google documentation for read_csv()
to ensure that tabs and spaces are considered field delimiters, that the first row is skipped, and that the column names
are correctly entered. Please see the 02_pca_python solution notebook if you need help. You should now have the
pca data loaded into a dataframe.

You should now have a pandas dataframe which looks like this:

Name PC1 PC2 PC3 PC4 Population
I001 -0.0192 0.0353 -0.0024 -0.0084 Ignore_Iran_

→˓Zoroastrian(PCA_outlier)
I002 -0.0237 0.0372 -0.0018 -0.0133 Ignore_Iran_

→˓Zoroastrian(PCA_outlier)
IREJ-T006 -0.0226 0.0417 0.0045 0.0003 Iran_Non-Zoroastrian_

→˓Fars

(continues on next page)

8 Chapter 2. Principal Components Analysis (PCA)
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(continued from previous page)

IREJ-T009 -0.0214 0.0404 0.0024 -0.0064 Iran_Non-Zoroastrian_
→˓Fars

IREJ-T022 -0.0165 0.0376 -0.0003 -0.0106 Iran_Non-Zoroastrian_
→˓Fars

IREJ-T023 -0.0226 0.0376 -0.0031 -0.0101 Iran_Non-Zoroastrian_
→˓Fars

IREJ-T026 -0.0203 0.0373 -0.0009 -0.0103 Iran_Non-Zoroastrian_
→˓Fars

IREJ-T027 -0.0241 0.0392 0.0025 -0.0072 Iran_Non-Zoroastrian_
→˓Fars

Let’s say you called this dataframe pcaDat. You can now very easily produce a plot of PC1 vs. PC2 for all samples
, by running plt.scatter(x=pcaDat["PC1"], y=pcaDat["PC2"]), which in my case yields a boring
figure like this:

Now, obviously, we would like to highlight the different populations by color. A quick and dirty solution is to simply
plot a different subset of the data on top, like this:

plt.scatter(x=pcaDat["PC1"], y=pcaDat["PC2"], label="")
for pop in ["Finnish", "Sardinian", "Armenian", "BedouinB"]:

d = pcaDat[pcaDat["Population"] == pop]
plt.scatter(x=d["PC1"], y=d["PC2"], label=pop)

(continues on next page)

2.6. Plotting modern populations 9
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(continued from previous page)

plt.legend()

This sequence of commands gives us:

OK, but how do we systematically show all the populations? There are too many of those to separate them all by
different colors, or by different symbols, so we need to combine colours and symbols and use all the combinations
of them to show all the populations. To do that, we first need to load the population list that we want to focus on for
now, which are the same lists as used above for running the PCA. In case of the West Eurasian PCA, you can load
the file using pd.read_csv("~/share/WestEurasia.poplist.txt", names=["Population"]).
sort_values(by="Population"). Next, we need to associate a color number and a symbol number with each
population. To keep things simple, I would recommend to simply cycle through all combinations automatically. This
code snippet looks a bit magic, but it does the job:

nPops = len(popListDat)
nCols = 8
nSymbols = int(nPops / nCols)
colorIndices = [int(i / nSymbols) for i in range(nPops)]
symbolIndices = [i % nSymbols for i in range(nPops)]
popListDat = popListDat.assign(colorIndex=colorIndices, symbolIndex=symbolIndices)

You should check that this worked by viewing the resulting popListDat variable (just type its name into a new
Jupyter notebook cell). Now we can produce the full PCA plot, which uses a for loop to cycle through all populations

10 Chapter 2. Principal Components Analysis (PCA)
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in the popListDat dataframe, and plots each listed population in turn, with its assigned color and symbol. To
prepare, we need a list of colors and symbols. Here, I am using the default color sequence from matplotlib and a
manual sequence of symbols, which for the sake of simplicity I simply put here for you to copy-paste:

symbolVec = ["8", "s", "p", "P", "*", "h", "H", "+", "x", "X", "D", "d", "<", ">", "^
→˓", "v"]
colorVec = [u'#1f77b4', u'#ff7f0e', u'#2ca02c', u'#d62728', u'#9467bd',

u'#8c564b', u'#e377c2', u'#7f7f7f', u'#bcbd22', u'#17becf']

With this, the final plot command is:

for i, row in popListDat.iterrows():
d = pcaDat[pcaDat.Population == row["Population"]]
plt.scatter(x=-d["PC1"], y=d["PC2"], c=colorVec[row["colorIndex"]],

marker=symbolVec[row["symbolIndex"]], label=row["Population"])
plt.legend(loc=(1.1, 0), ncol=3)

which produces a nice plot like this (note that I’ve flipped the x axis to make the correlation with Geography more
apparent):

2.7 Adding ancient individuals

Of course, until now we haven’t yet included any of the actual ancient test individuals that we want to analyse, but
with plot command above you can very easily add them, by simply adding a few manual plot command before the
legend, but outside of the foor loop.

Exercise

Add two ancient populations to this plot, named “Levanluhta”, “JK2065” (the third individual from Levanluhta with
different ancestry) and “BolshoyOleniOstrov”, using the same technique of selecting populations from the big dataset
and plotting them as used in case of the modern populations. Use “black” as colour, and different symbols for each
additional population. While you’re at it, go ahead and also add the population called “Saami.DG”.

2.7. Adding ancient individuals 11
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Finally, we are going to learn something about deeper European history, by also adding some Neolithic and Mesolithic
populations:

Exercise

Add three more populations to the plot, called “WHG” (short for Western Hunter-Gatherers), “LBK_EN” (short for
Linearbandkeramik Early Neolithic, from about 6,000 years ago), and “Yamnaya_Samara”, a late Neolithic population
from the Russian Steppe, about 4,800 years ago. It can be shown that modern European genetic diversity is formed by
a mixture of these three divergence ancient groups (Lazaridis2014, Haak2015).

The final plot should look like this:

You can carry out similar commands to plot the All Eurasia case, which should look like this:

12 Chapter 2. Principal Components Analysis (PCA)

https://www.nature.com/articles/nature13673
https://www.nature.com/articles/nature14317


CHAPTER 3

F Statistics

3.1 F3 Statistics

F3 statistics are a useful analytical tool to understand population relationships. F3 statistics, just as F4 and F2 statistics
measure allele frequency correlations between populations and were introduced by Nick Patterson in his Patterson
2012

F3 statistics are used for two purposes: i) as a test whether a target population (C) is admixed between two source
populations (A and B), and ii) to measure shared drift between two test populations (A and B) from an outgroup (C).

F3 statistics are in both cases defined as the product of allele frequency differences between population C to A and B,
respectively:

𝐹3(𝐴,𝐵;𝐶) = ⟨(𝑐− 𝑎)(𝑐− 𝑏)⟩

Here, ⟨·⟩ denotes the average over all genotyped sites, and 𝑎, 𝑏 and 𝑐 denote the allele frequency for a given site in the
three populations 𝐴,𝐵 and 𝐶.

3.2 Admixture F3 Statistics

It can be shown that if that statistics is negative, it provides unambiguous proof that population C is admixed between
populations A and B, as in the following phylogeny (taken from Figure 1 from Patterson 2012):

13
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Intuitively, an F3 statistics becomes negative if the allele frequency of the target population (C) is on average interme-
diate between the allele frequencies of A and B. Consider as an extreme example a genomic site where 𝑎 = 0, 𝑏 = 1
and 𝑐 = 0.5. Then we have (𝑐−𝑎)(𝑐− 𝑏) = −0.25, which is negative. So if the entire statistics is negative, it suggests
that in many positions, the allele frequency 𝑐 is indeed intermediate, suggesting admixture between the two sources.

Note: If an F3 statistics is not negative, it does not proof that there is no admixture!

We will use this statistics to test if Finnish are admixed between East and West, using different Eastern and Western
sources. In the West, we use French, Icelandic, Lithuanian and Norwegian as source, and in the East we use Nganasan
and one of the populations analysed in this workshop, Bolshoy Oleni Ostrov, a 3,500 year old group from the Northern
Russian Kola-peninsula.

We use the software qp3Pop from AdmixTools, which similar to smartpca takes a parameter file:

genotypename: input genotype file (in eigenstrat format)
snpname: input snp file (in eigenstrat format)
indivname: input indiv file (in eigenstrat format)
popfilename: a file containing rows with three populations on each line A, B and C.
inbreed: YES

Here, the last option is necessary if we are analysing pseudo-diploid ancient data (which is the case here).

To prepare the popfilename, open a new file using Jupyter and enter:

Nganasan French Finnish
Nganasan Icelandic Finnish
Nganasan Lithuanian Finnish
Nganasan Norwegian Finnish
BolshoyOleniOstrov French Finnish
BolshoyOleniOstrov Icelandic Finnish
BolshoyOleniOstrov Lithuanian Finnish
BolshoyOleniOstrov Norwegian Finnish

Exercise

Prepare the parameter file with the input data as in the PCA session (see Principal Components Analysis (PCA)) and
then run qp3Pop -p PARAMETER_FILE, where PARAMETERFILE should be replaced by your parameter file
name. This will take about 3 minutes (see the ~/share/solutions/bash_commands notebook if you need a

14 Chapter 3. F Statistics
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hint).

The results are in the output that you can view in the Notebook. The crucial bit should look like this:

Source 1 Source 2 Target f_3
→˓ std. err Z SNPs
result: Nganasan French Finnish -0.004539
→˓ 0.000510 -8.894 442567
result: Nganasan Icelandic Finnish -0.005297
→˓ 0.000563 -9.404 427954
result: Nganasan Lithuanian Finnish -0.005062
→˓ 0.000590 -8.574 426231
result: Nganasan Norwegian Finnish -0.004744
→˓ 0.000569 -8.332 428161
result: BolshoyOleniOstrov French Finnish -0.002814
→˓ 0.000444 -6.341 402958
result: BolshoyOleniOstrov Icelandic Finnish -0.002590
→˓ 0.000486 -5.323 386418
result: BolshoyOleniOstrov Lithuanian Finnish -0.001523
→˓ 0.000536 -2.840 384134
result: BolshoyOleniOstrov Norwegian Finnish -0.001553
→˓ 0.000502 -3.092 386203

This output shows as first three columns the three populations A, B (sources) and C (target). Then the f3 statistics,
which is negative in all cases tested here, a standard error, a Z score and the number of SNPs involved in the statistics.

The Z score is key: It gives the deviation of the f3 statistic from zero in units of the standard error. As general rule, a Z
score of -3 or more suggests a significant rejection of the Null hypothesis that the statistic is not negative. In this case,
all of the statistics are significantly negative, proving that Finnish have ancestral admixture of East and West Eurasian
ancestry. Note that the statistics does not suggest when this admixture happened!

3.3 F4 Statistics

A different way to test for admixture is by “F4 statistics” (or “D statistics” which is very similar), also introduced in
Patterson 2012.

F4 statistics are also defined in terms of correlations of allele frequency differences, similarly to F3 statistics (see
above), but involving four different populations, not just three. Specifically we define

𝐹4(𝐴,𝐵;𝐶,𝐷) = ⟨(𝑎− 𝑏)(𝑐− 𝑑)⟩.

To understand the statistics, consider the following tree:
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In this tree, without any additional admixture, the allele frequency difference between A and B should be completely
independent from the allele frequency difference between C and D. In that case, F4(A, B; C, D) should be zero, or at
least not statistically different from zero. However, if there was gene flow from C or D into A or B, the statistic should
be different from zero. Specifically, if the statistic is significantly negative, it implies gene flow between either C and
B, or D and A. If it is significantly positive, it implies gene flow between A and C, or B and D.

The way this statistic is often used, is to put a divergent outgroup as population A, for which we know for sure that
there was no admixture into either C or D. With this setup, we can then test for gene flow between B and D (if the
statistic is positive), or B and C (if it is negative).

Here, we can use this statistic to test for East Asian admixture in Finns, similarly to the test using Admixture F3
statistics above. We will use the qpDstat program from AdmixTools for that. We need to again prepare a population
list file, this time with four populations (A, B, C, D). I suggest you open a new file and fill it with:

Mbuti Nganasan French Finnish
Mbuti Nganasan Icelandic Finnish
Mbuti Nganasan Lithuanian Finnish
Mbuti Nganasan Norwegian Finnish
Mbuti BolshoyOleniOstrov French Finnish
Mbuti BolshoyOleniOstrov Icelandic Finnish
Mbuti BolshoyOleniOstrov Lithuanian Finnish
Mbuti BolshoyOleniOstrov Norwegian Finnish

You can then use this file again in a parameter file, similar to the one prepared for qp3Pop above:

genotypename: input genotype file (in eigenstrat format)
snpname: input snp file (in eigenstrat format)
indivname: input indiv file (in eigenstrat format)
popfilename: a file containing rows with three populations on each line A, B and C.
f4mode: YES

Note that you cannot give the “inbreed” option here.

Exercise

Prepare the parameter file as suggested above and then run qpDstat -p PARAMETER_FILE, where
PARAMETERFILE should be replaced by your parameter file name. This will take about 3 minutes (see the ~/
share/solutions/bash_commands notebook if you need a hint).

The results should be (skipping some header lines):
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result: Mbuti Nganasan French Finnish 0.002363 19.016 29254
→˓27852 593124
result: Mbuti Nganasan Icelandic Finnish 0.001721 11.926 28915
→˓27894 593124
result: Mbuti Nganasan Lithuanian Finnish 0.001368 9.664 28745
→˓27933 593124
result: Mbuti Nganasan Norwegian Finnish 0.001685 11.663 28933
→˓27934 593124
result: Mbuti BolshoyOleniOstrov French Finnish 0.001962 16.737
→˓ 27249 26175 547486
result: Mbuti BolshoyOleniOstrov Icelandic Finnish 0.001084 7.776
→˓ 26876 26282 547486
result: Mbuti BolshoyOleniOstrov Lithuanian Finnish 0.000554 3.942
→˓ 26683 26380 547486
result: Mbuti BolshoyOleniOstrov Norwegian Finnish 0.000952 6.707
→˓ 26873 26351 547486

Here, the key columns are columns 2, 3, 4 and 5, denoting A, B, C and D, and column 6 and 7, which denote the F4
statistic and the Z score, measuring significance in difference from zero.

As you can see, in all cases, the Z score is positive and larger than 3, indicating a significant deviation from zero, and
implying gene flow between Nganasan and Finnish, and BolshoyOleniOstrov and Finnish, when compared to French,
Icelandic, Lithuanian or Norwegian.

3.4 Outgroup F3 Statistics

Outgroup F3 statistics are a special case how to use F3 statistics. The definition is the same as for Admixture F3
statistics, but instead of a target C and two source populations A and B, one now gives an outgroup C and two test
populations A and B.

To get an intuition for this statistics, consider the following tree:

In this scenario, the statistic F3(A, B; C) measures the branch length from C to the common ancestor of A and B,
coloured red. So this statistic is simply a measure of how closely two population A and B are related with each other,
as measured from a distant outgroup. It is thus a similarity measure: The higher the statistic, the more genetically
similar A and B are to one another.

We can use this statistic to measure for example the the genetic affinity to East Asia, by performing the statistic
F3(Han, X; Mbuti), where Mbuti is a distant African population and acts as outgroup here, Han denote Han Chinese,
and X denotes various European populations that we want to test.

You need to start, again, by preparing a list of population triples to be measured. I suggest the following list:
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Han Chuvash Mbuti
Han Albanian Mbuti
Han Armenian Mbuti
Han Bulgarian Mbuti
Han Czech Mbuti
Han Druze Mbuti
Han English Mbuti
Han Estonian Mbuti
Han Finnish Mbuti
Han French Mbuti
Han Georgian Mbuti
Han Greek Mbuti
Han Hungarian Mbuti
Han Icelandic Mbuti
Han Italian_North Mbuti
Han Italian_South Mbuti
Han Lithuanian Mbuti
Han Maltese Mbuti
Han Mordovian Mbuti
Han Norwegian Mbuti
Han Orcadian Mbuti
Han Russian Mbuti
Han Sardinian Mbuti
Han Scottish Mbuti
Han Sicilian Mbuti
Han Spanish_North Mbuti
Han Spanish Mbuti
Han Ukrainian Mbuti
Han Levanluhta Mbuti
Han BolshoyOleniOstrov Mbuti
Han ChalmnyVarre Mbuti
Han Saami.DG Mbuti

which cycles through many populations from Europe, including the ancient individuals from Chalmny Varre, Bolshoy
Oleni Ostrov and Levänluhta.

Exercise

Copy this list into a file, and prepare a parameter file for running qp3Pop, similar to the parameter file for admixture
F3 statistics above, and run qp3Pop with that parameter file as above.

You should find this (skipping header lines from the output):

Source 1 Source 2 Target f_
→˓3 std. err Z SNPs
result: Han Chuvash Mbuti 0.233652
→˓ 0.002072 112.782 502678
result: Han Albanian Mbuti 0.215629
→˓ 0.002029 106.291 501734
result: Han Armenian Mbuti 0.213724
→˓ 0.001963 108.882 504370
result: Han Bulgarian Mbuti 0.216193
→˓ 0.001979 109.266 504310
result: Han Czech Mbuti 0.218060
→˓ 0.002002 108.939 504089
result: Han Druze Mbuti 0.209551
→˓ 0.001919 109.205 510853 (continues on next page)
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result: Han English Mbuti 0.216959
→˓ 0.001973 109.954 504161
result: Han Estonian Mbuti 0.220730
→˓ 0.002019 109.332 503503
result: Han Finnish Mbuti 0.223447
→˓ 0.002044 109.345 502217
result: Han French Mbuti 0.216623
→˓ 0.001969 110.012 509613
result: Han Georgian Mbuti 0.214295
→˓ 0.001935 110.721 503598
result: Han Greek Mbuti 0.215203
→˓ 0.001984 108.465 507475
result: Han Hungarian Mbuti 0.217894
→˓ 0.001999 109.004 507409
result: Han Icelandic Mbuti 0.218683
→˓ 0.002015 108.553 504655
result: Han Italian_North Mbuti 0.215332
→˓ 0.001978 108.854 507589
result: Han Italian_South Mbuti 0.211787
→˓ 0.002271 93.265 492400
result: Han Lithuanian Mbuti 0.219615
→˓ 0.002032 108.098 503681
result: Han Maltese Mbuti 0.210359
→˓ 0.001956 107.542 503985
result: Han Mordovian Mbuti 0.223469
→˓ 0.002008 111.296 503441
result: Han Norwegian Mbuti 0.218873
→˓ 0.002023 108.197 504621
result: Han Orcadian Mbuti 0.217773
→˓ 0.002014 108.115 504993
result: Han Russian Mbuti 0.223993
→˓ 0.001995 112.274 506525
result: Han Sardinian Mbuti 0.213230
→˓ 0.001980 107.711 508413
result: Han Scottish Mbuti 0.218489
→˓ 0.002039 107.145 499784
result: Han Sicilian Mbuti 0.212272
→˓ 0.001975 107.486 505477
result: Han Spanish_North Mbuti 0.215885
→˓ 0.002029 106.383 500853
result: Han Spanish Mbuti 0.213869
→˓ 0.001975 108.297 513648
result: Han Ukrainian Mbuti 0.218716
→˓ 0.002007 108.950 503981
result: Han Levanluhta Mbuti 0.236252
→˓ 0.002383 99.123 263049
result: Han BolshoyOleniOstrov Mbuti 0.247814
→˓ 0.002177 113.849 457102
result: Han ChalmnyVarre Mbuti 0.233499
→˓ 0.002304 101.345 366220
result: Han Saami.DG Mbuti 0.236198
→˓ 0.002274 103.852 489038

Now it’s time to plot these results using python.

Exercise
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Copy the results (all lines from the output beginning with “results:”) into a text file, open a Jupyter python3 notebook
and load the text file into a pandas dataframe, using pd.read_csv(FILENAME, delim_whitespace=True,
names=["dummy", "A", "B", "C", "F3", "StdErr", "Z", "SNPS"]. View the resulting
dataframe and make sure it looks correct.

A useful way to plot these results is by sorting them by the F3 statistics, and then plotting the test populations from
left to right, beginning with the largest values. This code snippet should do the trick:

d=f3dat_han.sort_values(by="F3")
y = range(len(d))
plt.figure(figsize=(6, 8))
plt.errorbar(d["F3"], y, xerr=d["stderr"], fmt='o')
plt.yticks(y, d["B"]);
plt.xlabel("F3(Han, Test; Mbuti)");

Exercise

Use the above code snippet to plot the Outgroup F3 data. Google the errorbar and yticks functions from
matplotlib if you want to know how they works.

You should get something like this:

showing that, as expected, The ancient samples and modern Saami are most closely related to modern East Asians (as
represented by Han) compared to many other Europeans.
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3.5 Outgroup F3 Statistics Biplot

The above plot shows an intriguing cline of differential relatedness to Han in many Europeans. For example, would
you have guessed that Icelandics are closer to Han than Armenians are to Han? This is very surprising, and it shows
that European ancestry has a complex relationship to East Asians. To understand this better, you can read Patterson
2012, who makes some intriguing observations. Patterson and colleagues use Admixture F3 statistics and apply it to
many populations world-wide. They summarise some population triples with the most negative F3 statistics in the
following table:

There are many interesting results here, but one of the most striking one is the finding of F3(Sardinian, Karitiana;
French), which is highly significantly negative. This statistics implies that French are admixed between Sardinians
and Karitiana, a Native American population from Brazil. How is that possible? We can of course rule out any recent
Native American backflow into Europe.

Patterson and colleagues explained this finding with hypothesising an ancient admixture event, from a Siberian pop-
ulation that contributed to both Europeans and to Native Americans. They termed that population the “Ancient North
Eurasians (ANE)”. The following admixture graph was suggested:
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As you can see, the idea is that modern Central Europeans, such as French, are admixed between Southern Europeans
(Sardinians) and ANE. The Ancient North Eurasians are a classic example for a “Ghost” population, a population
which does not exist anymore in unmixed form, and from which we have no direct individual representative.

Amazingly, two years after the publication of Patterson 2012, the ANE ghost population was actually found: Raghavan
et al. and colleagues, in 2014, published a paper called “Upper Palaeolithic Siberian genome reveals dual ancestry of
Native Americans”. A 24,000 year old boy (called MA1) from the site of “Mal’ta” in Siberia was shown to have close
genetic affinity with both Europeans and in particular Native Americans, just as proposed in Patterson 2012.

The affinities are summarised nicely in this figure from Raghavan et al.:

OK, so we now know that ancestry related to Native Americans contributed to European countries. Could that possibly
explain the affinity of our ancient samples and Saami to Han Chinese in some way? To test this, we will run the same
Outgroup F3 statistics as above, but this time not with Han but with MA1 as test population. Specifically, we run the
following population triples in qp3Pop:

MA1_HG.SG Chuvash Mbuti
MA1_HG.SG Albanian Mbuti
MA1_HG.SG Armenian Mbuti
MA1_HG.SG Bulgarian Mbuti
MA1_HG.SG Czech Mbuti
MA1_HG.SG Druze Mbuti
MA1_HG.SG English Mbuti

(continues on next page)
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MA1_HG.SG Estonian Mbuti
MA1_HG.SG Finnish Mbuti
MA1_HG.SG French Mbuti
MA1_HG.SG Georgian Mbuti
MA1_HG.SG Greek Mbuti
MA1_HG.SG Hungarian Mbuti
MA1_HG.SG Icelandic Mbuti
MA1_HG.SG Italian_North Mbuti
MA1_HG.SG Italian_South Mbuti
MA1_HG.SG Lithuanian Mbuti
MA1_HG.SG Maltese Mbuti
MA1_HG.SG Mordovian Mbuti
MA1_HG.SG Norwegian Mbuti
MA1_HG.SG Orcadian Mbuti
MA1_HG.SG Russian Mbuti
MA1_HG.SG Sardinian Mbuti
MA1_HG.SG Scottish Mbuti
MA1_HG.SG Sicilian Mbuti
MA1_HG.SG Spanish_North Mbuti
MA1_HG.SG Spanish Mbuti
MA1_HG.SG Ukrainian Mbuti
MA1_HG.SG Levanluhta Mbuti
MA1_HG.SG BolshoyOleniOstrov Mbuti
MA1_HG.SG ChalmnyVarre Mbuti
MA1_HG.SG Saami.DG Mbuti

where MA1_HG.SG is the cryptic name for the MA1 genome from Raghavan et al..

Exercise

Follow the same protocol as above: Copy the list into a file, prepare a parameter file for qp3Pop with that population
triple list, and run qp3Pop. Copy the results (all lines beginning with “results:”) into a file and load it into python via
pd.read_csv().

To test in what way the relationship to Han Chinese is correlated with the relationship with MA1, we will now plot
the two statistics against each other in a scatter plot. We first have to merge the two outgroup-F3 datasets together.
Here is the code including loading (assuming that the two F3 dataframes are called outgroupf3dat_Han and
outgroupf3dat_MA1):

outgroupf3dat_Han = pd.read_csv("/home/training/work/outgroupF3_results_Han.txt",
delim_whitespace=True,
names=["dummy", "A", "B", "C", "F3", "stderr", "Z", "nSNPs"])

outgroupf3dat_MA1 = pd.read_csv("/home/training/work/outgroupF3_results_MA1.txt",
delim_whitespace=True,
names=["dummy", "A", "B", "C", "F3", "stderr", "Z", "nSNPs"])

outgroupf3dat_merged = outgroupf3dat_Han.merge(outgroupf3dat_MA1, on="B", suffixes=("_
→˓Han", "_MA1"))

Exercise

run the above merge command and check that it worked by viewing the resulting dataframe.

Finally, we can produce our bi-plot, using this code:
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plt.figure(figsize=(10, 10))
plt.scatter(x=outgroupf3dat_merged["F3_Han"], y=outgroupf3dat_merged["F3_MA1"])
plt.xlabel("F3(Test, Han; Mbuti)");
plt.ylabel("F3(Test, MA1; Mbuti)");

This should yield something like this:

This isn’t very useful, however, as we cannot see which point is which population. We can use the annotation function
from matplotlib to add text labels to each point:

plt.figure(figsize=(10, 10))
plt.scatter(x=outgroupf3dat_merged["F3_Han"], y=outgroupf3dat_merged["F3_MA1"])
for i, row in outgroupf3dat_merged.iterrows():

plt.annotate(row["B"], (row["F3_Han"], row["F3_MA1"]))
plt.xlabel("F3(Test, Han; Mbuti)");
plt.ylabel("F3(Test, MA1; Mbuti)");

which should yield:
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Exercise

Create this plot with the code snippets above.

The result shows that indeed the affinity to East Asians in the bulk of European contries can be explained by MA1-
related ancestry. Most European countries have a linear relationship between their affinity to Han and their affinity to
MA1. However, this is not true for our ancient samples from Fennoscandia and for modern Saami and Chuvash, who
have extra affinity to Han not explained by MA1 (Lazaridis et al. 2014).

3.5. Outgroup F3 Statistics Biplot 25



Genome Analysis Workshop 2018 Documentation, Release 1.0

26 Chapter 3. F Statistics



CHAPTER 4

MSMC

4.1 Prerequisites

We first need to download some python scripts from the msmc-tools repository. To do that, go to your home directory
and run git clone https://github.com/stschiff/msmc-tools

You should now have a directory called msmc-tools in your home-folder, as you can verify by running ls.

4.2 Data

All input data and intermediate files for this tutorial are at ~/share/MSMC-tutorial-files/.

For this lesson, we will use two trios from the 69 Genomes dataset by Complete Genomics. You will find the so called
“MasterVarBeta” files for six individuals for chromosome 1 in the cg_data subdirectory in the tutorial files. Some
information on the six samples: The first three form a father-mother-child trio from the West-African Yoruba, a people
living in Nigeria. Here, NA19240 is the offspring, and NA19238 and NA19239 are the two parents. The second three
samples form a father-mother-child trio from Utah (USA), with European ancestry. Here, NA12878 is the offspring,
and NA12891 and NA12892 are the parents.

4.3 Generating consensus sequences for each sample

We will use the masterVar-files for each of the 6 samples, and use the cgCaller.py script in the msmc-tools
repository to generate a VCF and a mask file for each individual from the masterVar file. For this, I suggest you
write a little shell script that loops over all individuals:

#!/usr/bin/env bash

MASTERVARDIR=/path/to/sequence_data
OUTDIR=/path/to/output_files
CHR=chr1

(continues on next page)
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for IND in NA19238 NA19239 NA19240 NA12878 NA12891 NA12892; do
MASTERVAR=$(ls $MASTERVARDIR/masterVarBeta-$IND-*.tsv.chr1.bz2)
OUT_MASK=$OUTDIR/$IND.$CHR.mask.bed.gz
OUT_VCF=$OUTDIR/$IND.$CHR.vcf.gz
~/msmc-tools/cgCaller.py $CHR $IND $OUT_MASK $MASTERVAR | gzip -c > $OUT_VCF

done

Here, we restrict analysis only on chromosome 1 (which is called chr1 in the Complete Genomics data sets). Nor-
mally, you would also loop over chromosomes 1-22 in this script.

The line MASTERVAR=$(ls ...) uses bash command substitution to look for the masterVar file and store the
result in the variable $MASTERVAR.

Copy the code above into a shell script, named for example runCGcaller.sh, adjust the paths, make it executable
via chmod u+x runCGcaller.sh and run it. You should see log messages indicating the currently processed
position in the chromosome. Chromosome 1 has about 250 million sites, so you can estimate the waiting time.

When finished (should take 10-20 minutes for all 6 samples), you should now have one *.mask.bed.gz and one
*.vcf.gz file for each individual.

4.4 Combining samples

Some explanation on the generated files: The VCF file in each sample contains all sites at which at least one of the
two chromosomes differs from the reference genome. Here is a sample:

##fileformat=VCFv4.1
##FORMAT=<ID=GT,Number=1,Type=String,Description="Phased Genotype">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA19238
chr1 38232 . A G . PASS . GT 1/1
chr1 41981 . A G . PASS . GT 1/1
chr1 47108 . G C . PASS . GT 1/0
chr1 47292 . T G . PASS . GT 1/0
chr1 49272 . G A . PASS . GT 1/1
chr1 51673 . T C . PASS . GT 1/0
chr1 52058 . G C . PASS . GT 1/0

This alone would not be enough information. MSMC is a Hidden Markov Model which uses the density of heterozy-
gous sites (1/0 genotypes) to estimate the time to the most recent common ancestor. However, for a density you need
not only a numerator but also a denominator, which in this case is the number of non-heterozygous sites, so typically
homozygous reference alleles. Those are not part of this VCF file, for efficiency reasons. That’s why we have a
Mask-file for each sample, that gives information in which regions in the genome could be called. Regions with not
enough coverage or too low quality will be excluded. The first lines of such a mask look like this:

chr1 11093 11101
chr1 11137 11154
chr1 11203 11235
chr1 11276 11288
chr1 11319 11371
chr1 11378 11387
chr1 11437 11453
chr1 11481 11504
chr1 11511 11527
chr1 11568 11637

which gives a very detailed view on which regions could be called (2nd and 3rd column are begin and end).
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There is one more mask that we need, which is the mappability mask. This mask defines regions in the reference
genome in which we trust the mapping to be of high quality because the reference sequence is unique in that area. The
mappability mask for chromosome 1 for the human reference GRCh37 is included in the Tutorial files. For all other
chromosomes, this README includes a link to download them, but we won’t need them in this tutorial.

For generating the input files for MSMC, we will use a script called generate_multihetsep.py, which merges
VCF and mask files together, and also performs simple trio-phasing. I will first show a command line that generates
and MSMC input file for a single diploid sample NA12878:

#!/usr/bin/env bash

INDIR=/path/to/VCF/and/mask/files
OUTDIR=/path/to/output_files
MAPDIR=/path/to/mappability/mask
~/msmc-tools/generate_multihetsep.py --chr 1 --mask $INDIR/NA12878.mask.bed.gz \

--mask $MAPDIR/hs37d5_chr1.mask.bed $INDIR/NA12878.vcf.gz > $OUTDIR/NA12878.chr1.
→˓multihetsep.txt

Here we have added the mask and VCF file of the NA12878 sample, and the mappability mask. I suggest you don’t
actually run this because we won’t need this single-sample processing.

To process these two trios, we will use the two offspring samples only to phase the four parental chromosomes. You
can do this with the trio option:

#!/usr/bin/env bash

INDIR=/path/to/VCF/and/mask/files
OUTDIR=/path/to/output_files
MAPDIR=/path/to/mappability/mask
generate_multihetsep.py --chr 1 \

--mask $INDIR/NA12878.chr1.mask.bed.gz --mask $INDIR/NA12891.chr1.mask.bed.gz --
→˓mask $INDIR/NA12892.chr1.mask.bed.gz \

--mask $INDIR/NA19240.chr1.mask.bed.gz --mask $INDIR/NA19238.chr1.mask.bed.gz --
→˓mask $INDIR/NA19239.chr1.mask.bed.gz \

--mask $MAPDIR/hs37d5_chr1.mask.bed --trio 0,1,2 --trio 3,4,5 \
$INDIR/NA12878.chr1.vcf.gz $INDIR/NA12891.chr1.vcf.gz $INDIR/NA12892.chr1.vcf.gz \
$INDIR/NA19240.chr1.vcf.gz $INDIR/NA19238.chr1.vcf.gz $INDIR/NA19239.chr1.vcf.gz \
> $OUTDIR/EUR_AFR.chr1.multihetsep.txt

Here we have first input all 6 calling masks, plus one mappability mask, then the two trio specifications (see ~/
msmc-tools/generate_multihetsep.py -h for details), and then the 6 VCF files.

The first lines of the resulting “multihetsep” file should look like this:

1 68306 44 TTTCTCCT,TTTCCTTC
1 68316 10 CCCTTCCT,CCCTCTTC
1 87563 13 CCTTTTTT
1 570089 259 TTTTCCCC
1 752566 1058 AAAAAGAA
1 752721 83 GGGGGAGA
1 756781 596 GGGGGGGA
1 756912 113 AGAAAAAA
1 757103 26 CCCCCCCT
1 757734 84 TTTTTCTT

This is the input file for MSMC. The first two columns denote chromosome and position of a segregating site within
the samples. The fourth column contains the 8 alleles in the 8 parental haplotypes of the four parents we put in.
When there are multiple patterns separated by a comma, it means that phasing information is ambiguous, so there are
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multiple possible phasings. This can happen if all three members of a trio are heterozygous, which makes it impossible
to separate the paternal and maternal allele.

The third column is special and I get a lot of questions about that column, so let me explain it as clearly as possible:
The third column contains the number of called sites since the previous segregating site, including the current site. So
for example, in the first row above, the first segregating site is at position 68306, but not all 68306 sites up to that site
were called homozygous reference, but only 44. This is very important for MSMC, because it would otherwise assume
that there was a huge homozygous segment spanning from 1 through 68306. Note that the very definition given above
also means that the third column is always greater or equal to 1 (which is actually enforced by MSMC)!

4.5 Running MSMC2 for estimating the effective population size

MSMC’s purpose is to estimate coalescence rates between haplotypes through time. This can then be interpreted for
example as the inverse effective population size through time. If the coalescence rate is estimated between subpopu-
lations, another interpretation would be how separated the two populations became through time. In this tutorial, we
will use both interpretations.

As a first step, we will use MSMC2 to estimate coalescence rates within the four African haplotypes alone, and within
the four European haplotypes alone. Here is a short script running both these cases:

#!/usr/bin/env bash

INPUTDIR=/path/to/multihetsep/files
OUTDIR=/path/to/output/dir

msmc2 -p 1*2+15*1+1*2 -o $OUTDIR/EUR.msmc2 -I 0,1,2,3 $INPUTDIR/EUR_AFR.chr1.
→˓multihetsep.txt
msmc2 -p 1*2+15*1+1*2 -o $OUTDIR/AFR.msmc2 -I 4,5,6,7 $INPUTDIR/EUR_AFR.chr1.
→˓multihetsep.txt

Let’s go through the parameters one by one. The -p 1*2+15*1+1*2 option defines the time segment patterning.
By default, MSMC uses 32 time segments, grouped as 1*2+25*1+1*2+1*3, which means that the first 2 segments
are joined (forcing the coalescence rate to be the same in both segments), then 25 segments each with their own rate,
and then again two groups of 2 and 3, respectively. MSMC2 run time and memory usage scales quadratically with the
number of time segments. Here, since we are only analysing a single chromosome, you should reduce the number of
segments to avoid overfitting. That’s why I set 18 segments, with two groups in the front and back. Grouping helps
avoiding overfitting, as it reduces the number of free parameters.

The -o option denotes an output prefix. The three files generated by msmc will be called like this prefix with endings
.final.txt, .loop.txt and .log.

The -I option denotes the 0-based indices of the haplotypes analysed. In our case we have 8 haplotypes, the first four
being of European ancestry, the latter of African ancestry. In the first run we estimate coalescence rates within the
European chromosomes (indices 0,1,2,3), and in the second case within the African chromosomes (indices 4,5,6,7).
The last argument to msmc2 is the multihetsep file. Normally you would run it on all 22 chromosomes, and in that
case you would simply give all those 22 files in a row.

On one processors, each of those runs will take about one hour, so that’s too long to actually run it, but you should at
least test whether it starts alright and then kill the job using CTRL-C. The output files of the runs are available in the
tutorial files.
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4.6 Estimating population separation history

Above we have run MSMC on each population individually. In order to better understand when and how the two
ancestral populations separated, we will use MSMC to estimate the coalescence rate across populations. Here is a
script for this run:

#!/usr/bin/env bash

INPUTDIR=/path/to/multihetsep/files
OUTDIR=/path/to/output/dir

msmc2 -I 0-4,0-5,1-4,1-5 -s -p 1*2+15*1+1*2 -o $OUTDIR/AFR_EUR.msmc2 $INPUTDIR/EUR_
→˓AFR.chr1.multihetsep.txt

Here, I am running on all pairs between the first two parental chromosomes in each subpopulation, so -I 0-4,0-5,
1-4,1-5. If you wanted to analyse all eight haplotypes (will take consiberably longer), you would have had to type
-I 0-4,0-5,0-6,0-7,1-4,1-5,1-6,1-7,2-4,2-5,2-6,2-7,3-4,3-5,3-6,3-7.

The -s flag tells MSMC to skip sites with ambiguous phasing. As a rule of thumb: For population size estimates, we
have found that unphased sites are not so much of a problem, but for cross-population analysis we typically remove
those.

4.7 Plotting in Python

The result files from MSMC2 look like this:

time_index left_time_boundary right_time_boundary lambda
0 0 2.61132e-06 2.93162
1 2.61132e-06 6.42208e-06 3043.06
2 6.42208e-06 1.19832e-05 3000.32
3 1.19832e-05 2.00987e-05 8353.98
4 2.00987e-05 3.19418e-05 12250.1
5 3.19418e-05 4.92247e-05 8982.41
...

Here, the first column denotes a simple index of all time segments, the second and third indicate the scaled start and
end time for each time interval. The last column contains the scaled coalescence rate estimate in that interval.

Let’s first plot the effective population sizes with the following python code:

mu = 1.25e-8
gen = 30
afrDat = pd.read_csv("/path/to/AFR.msmc2.final.txt", delim_whitespace=True)
eurDat = pd.read_csv("/path/to/EUR.msmc2.final.txt", delim_whitespace=True)
plt.step(afrDat["left_time_boundary"]/mu*gen, (1/afrDat["lambda"])/(2*mu), label="AFR
→˓")
plt.step(eurDat["left_time_boundary"]/mu*gen, (1/eurDat["lambda"])/(2*mu), label="EUR
→˓")
plt.ylim(0,40000)
plt.xlabel("years ago");
plt.ylabel("effective population size");
plt.gca().set_xscale('log')
plt.legend()

Obviously, you have to adjust the path to the final result files under ~/share/MSMC-tutorial-files. The code
produces this plot:
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You can see that both ancestral population had similar effective population sizes before 200,000 years ago, after which
the European ancestors experienced a severe population bottleneck. Of course, this is relatively low resolution because
we are only analysing one chromosome, but the basic signal is already visible. Note that here we have scaled times
and rates using a generation time of 30 years and a mutation rate of 1.25e-8, which are the same values as used in the
initial publication on MSMC

For the cross-population results, we would like to plot the coalescence rate across populations relative to the values
within the populations. However, since we have obtained these three rates independently, we have allowed MSMC2
to choose different time interval boundaries in each case, depending on the observed heterozygosity within and across
populations. We therefore first have to use the script ~/msmc-tools/combinedCrossCoal.py:

#!/usr/bin/env bash

DIR=/path/to/msmc/results

combineCrossCoal.py $DIR/EUR_AFR.msmc2.final.txt $DIR/EUR.msmc2.final.txt \
$DIR/AFR.msmc2.final.txt > $DIR/EUR_AFR.combined.msmc2.final.txt

The resulting file (also available under ~/share/MSMC-tutorial-files looks like this:

time_index left_time_boundary right_time_boundary lambda_00 lambda_01
→˓ lambda_11
0 1.1893075e-06 4.75723e-06 1284.0425703 2.24322 2650.59574175
1 4.75723e-06 1.15451e-05 3247.01877925 2.24322 2940.90417746
2 1.15451e-05 2.12306e-05 7798.2270432 99.0725 2526.98957475
3 2.12306e-05 3.50503e-05 11261.3153077 2271.31 2860.21608183
4 3.50503e-05 5.47692e-05 8074.85679367 4313.17 3075.15793155

Here, instead of just one columns with coalescence rates, as before, we now have three. The first is the rate within
population 0, the second across populations, the third within population 1.

OK, so we can now plot the relative cross-coalescence rate as a function of time:

mu = 1.25e-8
gen = 30
crossPopDat = pd.read_csv("/path/to/EUR_AFR.combined.msmc2.final.txt", delim_
→˓whitespace=True)
plt.step(crossPopDat["left_time_boundary"]/mu*gen, 2 * crossPopDat["lambda_01"] /
→˓(crossPopDat["lambda_00"] + crossPopDat["lambda_11"]))
plt.xlim(1000,500000)

(continues on next page)
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(continued from previous page)

plt.xlabel("years ago");
plt.ylabel("relative cross coalescence rate");
plt.gca().set_xscale('log')

which produces this plot:

where you can see that the separation of (West-African) and European ancestors began already 200,000 years ago. The
two populations then became progressively more separated over time, reaching a mid-point of 0.5 around 80,000 years
ago. Since about 45,000 years, the two population seem fully separated on this plot. Note that even in simulations with
a sharp separation, MSMC would not produce an infinitely sharp separation curve, but introduces a “smear” around
the true separation time, so this plot is compatible also with the assumption that the two populations where already
fully separated around 60,000 years ago, even though the relative cross-coalescence rate is not zero at that point yet.
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CHAPTER 5

Solution Notebooks

• A jupyter notebook with all bash commands from this workshop: https://nbviewer.jupyter.org/github/stschiff/
compvar-workshop-docs/blob/master/supp/bash_commands.ipynb

• A jupyter notebook with python commands for pca and f statistics: https://nbviewer.jupyter.org/github/stschiff/
compvar-workshop-docs/blob/master/supp/python_pca_fstats.ipynb

• A jupyter notebook with the python commands used for plotting the MSMC results: https://nbviewer.jupyter.
org/github/stschiff/compvar-workshop-docs/blob/master/supp/python_MSMC.ipynb
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CHAPTER 6

Indices and tables

• genindex

• modindex

• search
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